
Thermal Analysis of Recessed Halogen Light Fixture

John Pinckney

pinckneyconsulting@yahoo.com

(480) 558-4986

Description of Problem

- A simplified model of halogen light fixture consisting of bulb, parabolic reflector and lens.
- Fixture is recessed in room ceiling.
- Assumed 200 watts of Infrared radiative power does not exit the fixture through the lens.
- Convection to attic and room air.
 - McAdams Relations used. Attic air at 35°C, room air at 23°C.
- Radiation to attic and room surfaces.
 - All surfaces assumed to have emissivity = 1.
 - All surfaces are opaque.
 - Attic surfaces at 40°C
 - Room surfaces at 23°C.

Two Modeling Methods

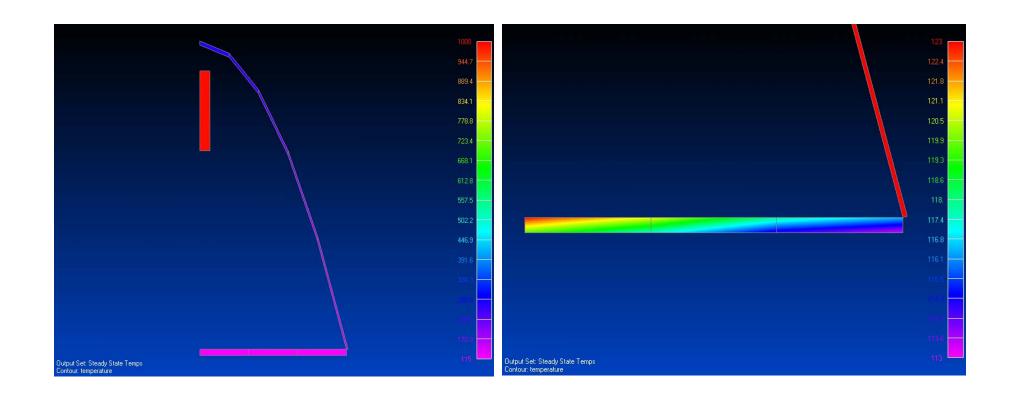
- 1. Nevada/Femap used to compute view factors and radiation conductors.
- 2. Schematic Visio model to obtain coarse results.

Nevada/Femap Model

- Parabolic reflector modeled as 5 conical frustums.
- Axisymmetric elements used.
- Model consists of 24 nodes.
- Sinda/g skeleton file used to compute convection conductors using McAdams relations. **BCD 3VARIABLES 1**

C take average temperatures for McAdams

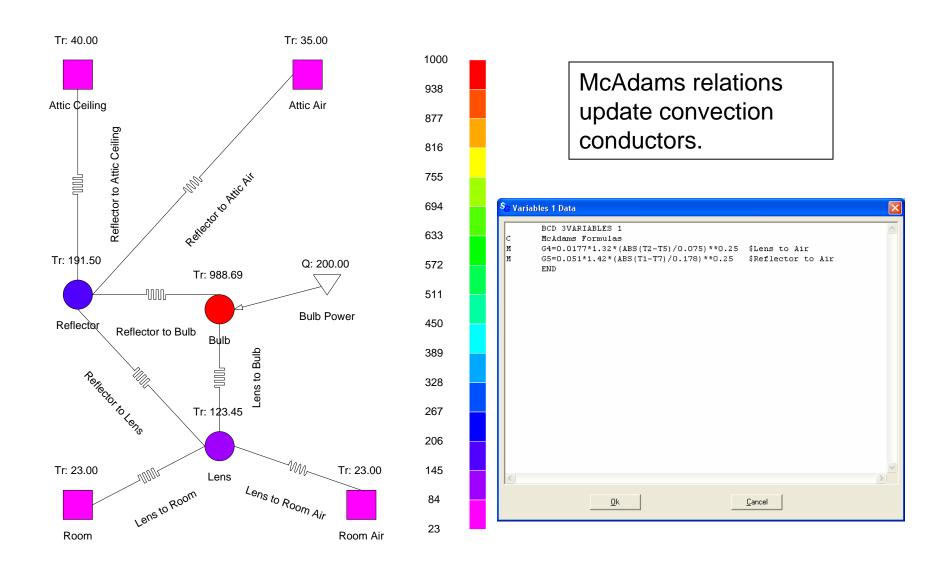
XLENS=DOT_PRODUCT(T(NR(30):NR(33)),C(NR(30):NR(33)))/


F & SUM(C(NR(30):NR(33)))

XLENSL = 0.075 !characteristic lens length

C Lens convection conductors

G(55:58)=A(8:11)*1.32*(ABS(23.0-XLENS)/XLENSL)**0.25


Nevada/Femap Post Processing

Schematic Model

- Model consists of only 3 nodes for the light fixture: one each for the reflector, bulb and lens.
- Preliminary model built using estimates for view factors later refined with view factors from Nevada results.

Schematic Model Built in Visio

Temperature Results with Convection

	Reflector	Bulb	Lens
	(°C)	(°C)	(°C)
Schematic	192	989	123
Nevada/Femap	193	991	115

Temperature Results without Convection*

	Reflector	Bulb	Lens
	(°C)	(°C)	(°C)
Schematic	235	991	179
Nevada/Femap	236	994	169

^{*}Covering the fixture with attic insulation would result in even more drastic rise in temperatures.

Heat Flow Results

Radiative Heat Flow (Watts)		Convective Heat Flow (Watts)		
Schematic/NevadaFemap		Schematic/NevadaFemap		
Reflector/Attic	107/110	Reflector/Attic	62/62	
Lens/Room	17/15	Lens/Room	14/13	

Conclusion

Since more than 80% of the heat flow is to the attic the fixtures must not be covered with insulation to ensure safe performance.